
2009/1/9

1

Hadoopで行う大規模データ処理

kzk <kzk@preferred.jp>

Hadoopとは？

• Googleの基盤ソフトウェアのクローン
G l Fil S t– Google File System

– MapReduce

• Yahoo Research の Doug Cutting氏が開発
– 元々はNutch Crawlerのサブプロジェクト

– Dougの子供の持っているぬいぐるみの名前

• Javaで記述

• Amazon S3との
親和性○

2009/1/9

2

Google関連参考論文 & スライド

• The Google File System
– Sanjay Ghemawat Howard Gobioff and Shu‐TakSanjay Ghemawat, Howard Gobioff, and Shu Tak
Leong, SOSP 2003

• MapReduce: Simplified Data Processing on Large
Clusters
– Jeffrey Dean and Sanjay Ghemawat, SOSP 2004

• Parallel Architectures and Compilation
Techniques (PACT) 2006, KeyNote
– http://www.cs.virginia.edu/~pact2006/program/mapr
educe‐pact06‐keynote.pdf

Hadoop参考文献

• Hadoop公式サイト

– http://hadoop.apache.org/core/

– Wiki: http://wiki.apache.org/hadoop/
• インストール方法・チュートリアル・プレゼン資料など

• Hadoop解析資料

• http://preferred.jp/pub/hadoop.htmlhttp://preferred.jp/pub/hadoop.html

• Hadoop, hBaseで構築する大規模データ処理
システム on Codezine
– http://codezine.jp/a/article/aid/2448.aspx

2009/1/9

3

Hadoop解析資料 with NTT‐Rさん

• OSS分散システムHadoopの検証
プ ダクシ に投入 きる ベ か– プロダクションに投入できるレベルか？

– Googleの実装との比較
• 機能単位で検証

– ソースコードの解析
• ソフトウェアの大体の構造

• 重要な部分を詳しく検証

– ベンチマーク
• スケーラビリティを確認

– 結果はオープンに公開
• http://preferred.jp/pubs/hadoop.html

調査結果概要

• Googleインフラの機能は大体実装済み

アトミ クな追記 エラ レコ ドスキ プも 0 19 0– アトミックな追記, エラーレコードスキップもv0.19.0
で実装される

• svnにはcommit済みで、RCがMLに流れている

• しかし大幅に変更が入ったため、(たぶん)しばらくは不
安定。あと1年程度で成熟期か?

• スケーラビリティラ

– 12台程度まではスケール

• 安定性にはまだ疑問

– レプリケーション数3の時にジョブが失敗する, etc.

2009/1/9

4

Hadoop周りのニュース

• Scaling Hadoop to 4000 nodes
– http://developer.yahoo.net/blogs/hadoop/2008/0
9/scaling_hadoop_to_4000_nodes_a.html

– いくつかのバグを潰すことによって500 nodesの4
～7倍の性能を発揮

• pingのタイミングが引き起こすバグなど

Hadoop使用事例

2009/1/9

5

国外の使用事例

• Yahoo
2000ノ ド– ～2000ノード

– 検索、広告、ログ処理、データ解析、etc
– SIGIRなどでもY!Rの論文にはHadoopが出てくる

• Amazon, Facebook
– ～400ノード

– ログ処理、データ解析

• その他
– 行動ターゲティング、検索インデクシング等

国内の採用事例

• はてな
– ログ解析ログ解析

– はてなブックマーク2のバックエンドで使用
• 全文検索まわり

• 楽天
– 大規模レコメンデーションエンジン

– http://www.atmarkit.co.jp/news/200812/01/rakuten.html

メ ルで何件か相談• メールで何件か相談
– 検索系(Lucene)、ログ処理系が多い

– ～100台
• Cellクラスター, EC2 (blogeye)等も

2009/1/9

6

MapReduceMapReduce

Motivation

問題

• インターネットの爆発的普及により、非常に大
規模なデータが蓄積されている規模なデータが蓄積されている
– 例えばWebページを考えて見る。

• 200億ページ * 20KB = 400 TB

– Disk読み込み性能は50MB/sec (SATA)
• 1台では読み込むだけでも約100日
• 保存するだけでも1000個程度のDiskが必要保存するだけでも1000個程度のDiskが必要

• このデータを効率的に処理したい

2009/1/9

7

解決方法

• お金

• とにかく大量のマシンを用意

– 1000台マシンがあれば1台で400G処理すればok

– 読み込むのに8000秒程度で済む

お金だけでは解決しない

• プログラミングが非常に困難になる
プロセス起動– プロセス起動

– プロセス監視

– プロセス間通信

– デバッグ

– 最適化

故障時 の対応– 故障時への対応

• しかも、新しいプログラムを作る度にこれらの
問題をいちいち実装する必要がある

2009/1/9

8

既存の分散/並列プログラミング環境

• MPI (Message Passing Interface)
並列プログラミングのためのライブラリ– 並列プログラミングのためのライブラリ

• スパコンの世界では主流

– プログラマは各プロセスの挙動を記述
• 通信プリミティブ(Send, Recv, All‐to‐All)が提供されてお
り、それを用いてデータ通信を実現り、そ を用 デ タ通信を実現

– 利点
• 通信パターンなどをプログラマがコントロールでき、問
題に対して最適なプログラムを記述する事ができる

MPIの問題点

• 問題点
耐障害性への考慮が少ない– 耐障害性への考慮が少ない

• アプリケーションが独自にチェックポイント機能を実装

• 1万台以上の環境で計算するには耐えられない
– 1台が1000日程度で壊れるとすると、1日で10台程度壊れる

– 壊れる度にチェックポイントから戻すとかやってらんない

– RAID組んでもそのうち壊れるので一緒

– 通信パターンなどを記述する作業が多くなり、実
際のアルゴリズムを記述するのにたどり着くまで
時間がかかる

2009/1/9

9

Googleでの使用率

MapReduceMapReduce

Model

2009/1/9

10

MapReduceの実行フロー

Data Map

Data Map

Reduce Data

Shuffle

Data Map

Reduce Data

MapReduceの実行フロー

• 入力読み込み
<key value>*– <key, value>*

• Map
– map: <key, value> ⇒ <key’, value’>*

• Shuffle
– shuffle: <key’, reducers> ⇒ destination reducer

R d• Reduce
– reduce: <key’, <value’> * > ⇒ <key’’, value’’>*

• 出力書き出し
– <key’’, value’’>*

2009/1/9

11

MapReduceの実行フロー

<k v>*⇒ <k’ v’>*

Data Map

Data Map

Reduce Data

Shuffle

<k, v>*

<k, v>*

<k, v> ⇒ <k , v >

<k’, <v’>*>* ⇒ <k’’, v’’>*

<k, v>* ⇒ <k’, v’>*

Data Map

Reduce Data

<k, v>*

<k, v>* ⇒ <k’, v’>*

<k’, <v’>*>* ⇒ <k’’, v’’>*

例: ワードカウント
foo foo foo
bar bar buzz

入力文書: doc1

Data Map

Data Map

Reduce Data

ShuffleData Map

Data Map

Reduce Data

Shuffle

2009/1/9

12

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Data

Shuffle

doc1: foo
doc1: foo

Data Map

Data Map

Reduce Data

Shuffle

doc1: foo
doc1: bar

doc1: bar
doc1: buz

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Data

Shuffle

doc1: foo
doc1: bar

doc1: foo
doc1: foo

Data Map

Data Map

Reduce Data

Shuffle

doc1: bar
doc1: buz

2009/1/9

13

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Datadoc1: foo
doc1: bar

doc1: foo
doc1: foo

foo: 1
foo: 1

bar: 1
foo: 1

Data Map

Data Map

Reduce Datadoc1: bar
doc1: buz

bar: 1
buz: 1

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Data

foo: 1
foo: 1

bar: 1
foo: 1

bar: <1, 1>
buz: <1>

fData Map

Data Map

Reduce Databar: 1
buz: 1

foo: <1, 1, 1>

2009/1/9

14

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Data

bar: <1, 1>
buz: <1>

fData Map

Data Map

Reduce Data

foo: <1, 1, 1>

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Data

f

bar: <1, 1>
buz: <1>

f

bar: 2
buz: 1

Data Map

Data Map

Reduce Data

foo: <1, 1, 1> foo: 3

2009/1/9

15

例: ワードカウント
foo foo foo
bar bar buz

入力文書: doc1

Data Map

Data Map

Reduce Data

bar: 2
buz: 1

fData Map

Data Map

Reduce Data

foo: 3

例: ワードカウント

• 擬似コード

map(string key, string value) {
foreach word in value:
emit(word, 1);

}

reduce(string key, vector<int> values) {reduce(string key, vector<int> values) {
int result = 0;
for (int i = 0; I < values.size(); i++)
result += values[i];

emit(key, result);
}

2009/1/9

16

MapReduce型の処理

• Grep

• Sort (適切なPartition関数を選択する必要)
• Log Analysis

• Web Graph Generation

• Inverted Index Construction

• Machine Learning
– NaiveBayes, K‐means, Expectation Maximization,
SVM, etc.

Hadoopの実装

2009/1/9

17

Hadoopの中身

• Hadoop Distributed File System
ク– GFSのクローン

– MapReduceプログラムの入力や出力に使用

• MapReduce
MapReduceを実現するためのサーバー ライブラ– MapReduceを実現するためのサ バ 、ライブラ
リ等

Hadoop Distributed File System

• Master/Slave アーキテクチャ

ファイルはブロックという単位に分割して保存• ファイルはブロックという単位に分割して保存

• NameNode
– Master
– ファイルのメタデータ(パス・権限など)を管理

• DataNode
– Slave
– 実際のデータ(ブロックを管理)

2009/1/9

18

From: http://hadoop.apache.org/core/docs/current/hdfs_design.html

Hadoop MapReduce

• Master/Slave アーキテクチャ

• JobTracker
– Master
– JobをTaskに分割し、Taskを各TaskTrackerに分配

• Job: MapReduceプログラムの実行単位
• Task: MapTask, ReduceTask

– 全てのTaskの進行状況を監視し、死んだり遅れたりしたTaskは
別のTaskTrackerで実行させる

• TaskTracker
– Slave
– JobTrackerにアサインされたTaskを実行

• 実際の計算処理を行う

2009/1/9

19

MapReduce Architecture

JobTracker

TaskTracker

HadopStreamng
Rubyによるワードカウント

reduce.rb$./bin/hadoop
jar contrib/hadoop‐0.15.3‐streaming.jar

map.rb

#!/usr/bin/env ruby
h = {}
while !STDIN.eof?
line = STDIN.readline.strip
word = line.split("¥t")[0]
unless h.has_key? word
h[word] = 1
else

jar contrib/hadoop 0.15.3 streaming.jar
‐input wcinput
‐output wcoutput
‐mapper /home/hadoop/kzk/map.rb
‐reducer /home/hadoop/kzk/reduce.rb
‐inputformat TextInputFormat
‐outputformat TextOutputFormat

p

#!/usr/bin/env ruby
while !STDIN.eof?
line = STDIN.readline.strip
ws = line.split
ws.each { |w| puts "#{w}¥t1“ }
end

else
h[word] += 1
end
end
h.each { |w, c| puts "#{w}¥t#{c}“ }

2009/1/9

20

Facebookのログ処理事例
Scribe + Hive

Facebook Architecture

Web Servers Scribe Servers

Network
StorageStorage

Hive on Hadoop Cluster
Oracle RAC MySQL

2009/1/9

21

Scribe

• Facebookの分散ログ収集ソフト
http://sourceforge net/projects/scribeserver/– http://sourceforge.net/projects/scribeserver/

– 10/27にOSS化

• 各サーバーはログを単に中継する役割
– 設定ファイルベースでトポロジーを設定

– 中継先が落ちている場合はディスクに書き込み
• ただし、毎回のsyncはしないただし、毎回のsyncはしない

• 多少は失われるけど、大丈夫だよね

• Thriftを使用
– 様々な言語のプログラムから利用可能

Facebook Hive

• Hadoop上に構築されたデータ処理基盤

– http://wiki.apache.org/hadoop/Hive

– struct, list, map等の構造化されたデータをSQLラ
イクな言語(HiveQL)で処理可能

– HDFS, Hadoop MapReduceを大いに活用

• Hadoopのcontribにコミット済みHadoopのcontribに ミット済み

– FBでは320台、2560 core、1.3PBで運用

– レポーティング、機械学習に使用

2009/1/9

22

HiveQL Example: Join Operation

pv users

pageid userid time

1 111 9:08:01

2 111 9:08:13

1 222 9:08:14

userid Age gender

111 25 female

222 32 male

pagei

d

age

1 25

2 25

1 32

X =

page_view user
pv_users

• SQL:
INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

1 32

key valuepageid userid time key value

HiveQL Join by MapReduce
page_view

pv_uses

111 <1,1>

111 <1,2>

222 <1,1>

1 111 9:08:01

2 111 9:08:13

1 222 9:08:14

userid age gender key value

111 <1,1>

111 <1,2>

111 <2,25>

key value

pageid age

1 25

2 25

user

map

Shuffle

111 25 female

222 32 male

111 <2,25>

222 <2,32>

key value

222 <1,1>

222 <2,32>

pageid age

1 32map

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

2009/1/9

23

HiveQL: 他の操作

• GROUPBY, DISTINCT JOIN
実装 能– MapReduceで実装可能

• 任意のMR用スクリプトを簡単に使用可能
• FROM (

– FROM pv_users

– SELECT TRANSFORM(pv users.userid, pv users.date)(p _ , p _)

– USING 'map_script' AS (dt, uid)

– CLUSTER BY dt) map

Enjoy Playing Around
Hadoop ☺

Thank you!

kzk < kzk@preferred.jp>

