AIコーディングツール7選【後編】
AIコーディングツールは開発効率を向上させる能力を秘める一方で、プライバシーやライセンスの問題も抱えている。どのようなツールが自社に合い、どのような場面で真価を発揮するのか。
AIコーディングツール7選【前編】
コーディング作業の効率化を支援するためのAI技術活用が盛り上がりを見せている。さまざまなAIコーディングツールの中から、自分の用途に合うものを選ぶために、その違いを知っておこう。
AIから理想の答えを引き出す対話術【後編】
AIモデルに望ましい回答を効率的に出力させるためにプロンプトを分割するのが「プロンプトチェーニング」だ。プロンプトチェーニングの実践方法や、業務における具体的な応用例を紹介する。
AIから理想の答えを引き出す対話術【中編】
AIモデルに望ましい回答を効率的に出力させるプロンプトを作るための技術に「プロンプトチェーニング」がある。プロンプトチェーニングを使うメリットや、使うに当たっての課題を紹介する。
AIから理想の答えを引き出す対話術【前編】
AIモデルから期待通りの回答を得られないときに役立つ技術が「プロンプトチェーニング」だ。プロンプトチェーニングの仕組みやテクニックを紹介する。
生成AIの実装はどこまで進んだ?【後編】
ビジネスにおける生成AIの導入が進むと同時に、企業は幾つかの課題に直面している。意思決定者への調査を基に、主要な問題を4つ紹介する。
生成AIの実装はどこまで進んだ?【前編】
ビジネスにおける生成AI実装は着実に進んでおり、日常業務に欠かせない存在となりつつある。2024年、生成AIの導入はどの程度進んだのか。特定の部門で導入が遅れている理由とは。
LLM新モデルがもたらす変化【後編】
OpenAIが2024年5月に発表した「GPT-4o」が世間の関心を集めるものの、移行にためらう企業もある。それはなぜなのか。
LLM新モデルがもたらす変化【中編】
OpenAIが2024年5月に発表した「GPT-4o」は、「GPT-4 Turbo」から何が進化したのか。実際に試してみた結果と併せて解説する。
LLM新モデルがもたらす変化【前編】
OpenAIが2024年5月に発表したLLM「GPT-4o」は、「GPT-4 Turbo」から何が進化したのか。押さえておくべきポイントを解説する。
プロンプトエンジニアリング実践ガイド【後編】
生成AIツールから“良い回答”を引き出すには、生成AIツールへの質問や指示である「プロンプト」の改善が効果的だ。誰でも実践できる3つのテクニックを、実例を交えて紹介する。
プロンプトエンジニアリング実践ガイド【前編】
生成AIから適切な回答が得られない場合は、生成AIへの質問や指示である「プロンプト」を変えることで回答を改善できる場合がある。プロンプト作成時に押さえるべき4つのポイントを紹介する。
押さえておきたいLLMの基礎【後編】
生成AIと聞いて「GPT」をはじめとする「LLM」を思い浮かべるのは間違いではないが、LLMと生成AIは異なる概念だ。4つの視点からその違いを解説する。
押さえておきたいLLMの基礎【中編】
近年大きな注目を集めるようになった大規模言語モデル(LLM)だが、その歴史は半世紀前にまでさかのぼる。AI技術の歩みを振り返る。
押さえておきたいLLMの基礎【前編】
テキストや画像を識別し、生成できる「生成AI」は、深層学習モデルを基盤として成り立っている。生成AIを支える代表的な深層学習モデルを5つ解説する。
生成AIで変化する開発【第4回】
組織の規模にかかわらず、開発業務に欠かせない存在となりつつある「生成AI」。一方で開発者には、このような状況を歓迎できない理由がある。生成AIが開発にもたらす変化と併せて解説する。
生成AIで変化する開発【第3回】
開発業務における生成AIの活用が進んでいる。開発者が評価するAIツールにはどのような特徴や機能があるのか。AI時代の開発者に求められるスキルと併せて解説する。
生成AIで変化する開発【第2回】
開発分野における生成AI導入が広がっている。生成AIツールを使うことで開発が効率化することが期待できる一方で、開発者がそれを素直に喜べない事情もある。どういうことなのか。
生成AIで変化する開発【第1回】
生成AIはなぜ世間の関心を集めるのか。その理由は、従来型AIとの違いにある。AI市場の動向を、開発分野への影響と併せて解説する。