“熱力学第二法則の例外”発見か 熱が「冷たい→熱い」場所に流れる状況とは? 米研究者らが発表:Innovative Tech
米カリフォルニア大学サンディエゴ校に所属する研究者らは、「熱は高温から低温へ流れる」という物理学の基本原理が、特殊な条件下では異なる振る舞いを示すことを明らかにした研究報告を発表した。
Innovative Tech:
このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。
X: @shiropen2
米カリフォルニア大学サンディエゴ校に所属する研究者らが発表した論文「Second law of thermodynamics: Spontaneous cold-to-hot heat transfer in a nonchaotic medium」は、「熱は高温から低温へ流れる」という物理学の基本原理が、特殊な条件下では異なる振る舞いを示すことを明らかにした研究報告である。
熱力学第二法則によれば、熱は常に高温の場所から低温の場所へと自然に流れる。長年にわたって物理学の基本法則として確立されてきた熱力学第二法則について、特殊条件下での新たな現象が見つかった。
研究チームは、コンピュータシミュレーションを使って、重力場の中で特殊な状態のガスが入った箱を調べた。このガスは「クヌーセンガス」と呼ばれ、通常のガスとは異なり、ガスの粒子同士がほとんどぶつからない非カオス的な状態になっている。
これは、箱の大きさに比べて粒子の数が少なく、粒子が自由に動き回れる空間が十分にある状態。そのため、粒子は主に箱の壁とだけぶつかりながら動き回る。箱の上部と下部は、粒子が接触した際に熱を吸収する設定とした。
通常、このような箱の中のガスは熱力学第二法則に従い、温度差がある場合は熱が高温部から低温部へと流れ、最終的に全体が同じ温度になる平衡状態に達する。この平衡状態はエントロピーが最大、つまり最も無秩序な状態となる。
しかし、粒子同士の衝突が希薄な非カオス的状況下では、箱の下部が上部より低温であっても、粒子が上方に移動して低温部から高温部へと熱を運ぶ現象を確認できた。これは、温かい粒子は冷たい粒子より速く動くため、重力に逆らって箱の上部まで到達して熱を失う可能性が高くなる一方、既に遅く冷たい粒子は衝突がない状態では下部にとどまり続けるためだという。
この発見は、熱力学第二法則を否定するものではなく、特定の条件下では熱の移動方向とエントロピーの増加という法則の2つの要素が異なる振る舞いを示す可能性を明らかにした。この現象は、エネルギー保存則(熱力学第一法則)に従いながら、通常とは異なる熱力学的状態を実現できることを示している。
Source and Image Credits: Qiao, Yu, and Zhaoru Shang. “Spontaneous cold-to-hot heat transfer in Knudsen gas.” arXiv preprint arXiv:2312.09161(2023).
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- エントロピー増大の3つの計算式、量子系では一致しない新発見 従来の常識を覆す 米研究者らが発表
米メリーランド大学と米ロチェスター大学に所属する研究者らは、量子系において、従来同等と考えれてきた3つのエントロピー増大の計算式が異なる結果を示すことを証明した研究報告を発表した。 - “エントロピー増大”を永遠に回避できる? 量子系が示す新たな数学的証明、米コロラド大学が報告
米コロラド大学ボルダー校に所属する研究者らは、自然が無秩序へと向かうエントロピー増大に抵抗できる量子状態が存在することを、新たな数学的証明で示した研究報告を発表した。 - 教科書を書き換えか? 新たな化学結合「一電子結合」発見 北大と東大が“1世紀前の理論”を実証
東京大学と北海道大学に所属する研究者らは、炭素原子間の新しい結合様式を発見した研究報告を発表した。炭素と炭素が電子1つだけで結合できることを実験で実証。この発見により、1世紀前に提唱された理論が実証された。 - 「量子もつれ」で空っぽの空間からエネルギーを抽出→瞬間移動→後で使えるよう保存に成功 米研究者が発表
米パデュー大学と米ノースカロライナ州立大学に所属する研究者らは、量子力学の性質を利用して、一見空っぽに見える空間からエネルギーを抽出し、瞬間移動させ、さらには貯蔵する方法を実証した研究報告を発表した。 - 陰陽マーク? 「量子もつれ」をリアルタイムに可視化することに成功 国際チームが23年に発表
イタリアのローマ・ラ・サピエンツァ大学とカナダのオタワ大学に所属する研究者らは2023年に、量子もつれの光子をリアルタイムに可視化する技術を提案した研究報告を発表した。