生成AIは「対話型」だけじゃない 富士通が取り組む「特化型生成AI」のポテンシャルを探る:Weekly Memo(2/2 ページ)
生成AIというと「ChatGPT」に代表される汎用の「対話型モデル」の利用が広がっているが、今後は企業のさまざまな業務を支援する「特化型モデル」も注目されそうだ。果たして、どれほどのポテンシャルがあるのか。富士通の取り組みから探る。
特化型生成AIは「市場として相当なポテンシャルがある」
以下、エンタープライズ生成AIフレームワークを構成する3つの技術についてポイントを挙げる。これがすなわち、特化型生成AIの技術におけるポテンシャルを表しているともいえる。
1 ナレッジグラフ拡張RAG
生成AIに関連文書を参照させるための既存のRAG技術では、大規模データを正確に参照できないことが課題となっている。富士通はこれを解決するため、既存のRAG技術を発展させ、企業規則や法令、企業が持つマニュアル、映像などの膨大なデータを構造化するナレッジグラフを自動作成することで、LLMが参照できるデータ量を、従来の数十万〜数百万トークン規模から1000万トークン以上に拡大できるナレッジグラフ拡張RAGを開発した。これにより、ナレッジグラフから関係性を踏まえた知識を生成AIに正確に与えられ、論理推論や出力根拠を示せるようになった。
図4は、ナレッジグラフ拡張RAGの適用事例として、「製品マニュアルQ&A」「ネットワークログ解析」「映像による作業分析」による課題と対応を示したものだ。園田氏によると、「これらは実際の動作を検証した」とのことだ。
2 生成AI混合技術
生成AIに入力したタスクに対し、最適な特化型の生成AIや機械学習(ML)モデルを自動生成する技術や、意思決定に関わる最適化を対話的に実施する技術などの既存のMLモデルなどを部品のように組み合わせる。プロンプトエンジニアリングやファインチューニングなどを実施することなく、自社の業務に適応したAIモデルを容易かつ迅速に生成できる同社独自の生成AI混合技術だ。
各AIモデルの向き、不向きを予測して最も性能が高いものを自動的に選択、生成することにより、企業のニーズを満たす高性能な特化型生成AIを数時間〜数日程度で素早く生成できる。
図5は、生成AI混合技術の適用事例と効果として、「契約書順守チェック」「サポートデスクの効率化」「ドライバー最適配置」のケースを挙げたものだ。契約書順守チェック30%の工数削減や、サポートデスクの作業効率の25%向上、運輸業におけるドライバー最適配置の計画策定時間の95%削減などの効果を見込む。
3 生成AI監査技術
生成AIの回答が企業規則や法令などに準拠しているかどうかを監査する技術だ。中身は、生成AIの内部動作状態の解析から回答の根拠を抽出して提示する生成AI説明性技術と、回答とその根拠の間の整合性を検証して矛盾点を分かりやすく提示するハルシネーション判定技術から構成されている。
どちらの技術も、テキストだけでなくナレッジグラフや画像といったマルチモーダルな入力データを対象にできるため、ナレッジグラフ拡張RAGと組み合わせてより高信頼な生成AIの活用を実現できる。
「この技術を交通画像から道路交通法違反の状況を検出するタスクに適用した結果、回答根拠として生成AIが入力された交通画像と道路交通法ナレッジグラフのどこに注目して回答したかを示せるようになった」(園田氏)
富士通は今後も、日本語やコード生成といった多種多様なエンタープライズ向けの特化型生成AIモデルを順次ラインアップに追加して拡充していく構えだ。
特化型生成AIの市場におけるポテンシャルはどれほどのものか。会見の質疑応答で聞いてみたところ、岡本氏が次のように答えた。
「これまで利用されてきた汎用の対話型モデルは、パブリッククラウドからインターネット経由で利用者が広がっていった。これに対し、特化型モデルは個々の企業での利用を前提としたものなので、プライベートクラウドやオンプレミスでも用途に応じて使えるようにしており、市場としては相当なポテンシャルがあると見ている」
生成AIの利用において対話型モデルと特化型モデルは競合するのではなく共存すると見られるので、岡本氏が言うように特化型モデルの市場性におけるポテンシャルは相当あるだろう。ただ、それを、業務の生産性向上はもちろん、ビジネスの競争力強化に向けた効率性だけでなく、新たなアイデアの創出やCX(カスタマーエクスペリエンス)の飛躍的な向上につなげていけるかどうか。生成AIによる変革の本質を見据えた上で、今後の動きに注目していきたい。
著者紹介:ジャーナリスト 松岡 功
フリージャーナリストとして「ビジネス」「マネジメント」「IT/デジタル」の3分野をテーマに、複数のメディアで多様な見方を提供する記事を執筆している。電波新聞社、日刊工業新聞社などで記者およびITビジネス系月刊誌編集長を歴任後、フリーに。主な著書に『サン・マイクロシステムズの戦略』(日刊工業新聞社、共著)、『新企業集団・NECグループ』(日本実業出版社)、『NTTドコモ リアルタイム・マネジメントへの挑戦』(日刊工業新聞社、共著)など。1957年8月生まれ、大阪府出身。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 「Weekly Memo」記事一覧
富士通の2024年調査から考察 「ビジネスとサステナビリティを両立させている企業」の特徴は?
富士通の調査によると、サステナビリティを最優先事項とする企業の割合が上昇している一方で、対策の進捗(しんちょく)は芳しくない。サステナビリティをビジネスと両立させている企業は、その他の企業と収益や株価、市場シェアにおいてどのような違いが出ているのか。富士通の最新調査から考察する。
日立は「生成AIを活用するための組織づくり」をどう進めているか 徳永副社長に聞く
企業は生成AIとどう向き合い、どう活用していくべきか。そのヒントを探るべく、生成AIの活用を積極的に進めている日立製作所の德永副社長に話を聞いた。
生成AIを「クラウドで活用する際」の3つの勘所――AWSパートナーイベントから考察
AWSがパートナー施策で生成AIに関する取り組みに注力している。その内容からユーザー視点で重要な「生成AIをクラウドで活用する際のポイント」を考察したい。
高性能な特化型生成AIを安く作る方法が登場 「進化的モデルマージ」の基礎論文を読む
生成AIの中でも特定の領域に特化した高性能モデルのニーズが高まっている。しかし、LLMは学習コストが高ことが問題だ。そこで注目されているのが、複数のモデルを組み合わせて新たなモデルを作る「モデルマージ」だ。生成AIを効率的に進化させられる。

