ニュース
» 2017年01月17日 07時55分 UPDATE

Google、機械学習で低解像度画像をシャープに見せる「RAISR」をサービスで実用化

Googleは、高解像度画像の4分の1のサイズで高品質な画像を表示できる機械学習技術「RAISR」を、まずはGoogle+で実用化した。今後他のサービスにも適用する計画だ。

[佐藤由紀子,ITmedia]

 米Googleは1月11日(現地時間)、表示する画像を高画質のままサイズを最高で75%削減できる機械学習採用の画像技術「RAISR」(Rapid and Accurate Image Super-Resolution)を、まずは「Google+」で採用したと発表した。将来的には他のサービスにも適用する計画という。

 画像表示が速くなり、モバイルでの通信料も節約できそうだ。

 RAISRは、Google Researchのリードサイエンティストであるペイマン・ミランファー博士が11月に発表した機械学習技術。従来の画質改善策である「アップサンプリング」(Photoshopなどで解像度を上げる機能)よりもシャープな結果を得られるとしている。

 raisr 1 左から、オリジナルの低解像度画像、アップサンプリングによる改善、RAISRによる改善

 大まかに言うと、RAISRは与えられた低解像度の画像を過去の学習データに基いて細部をフィルタリングして改善する。この作業は端末側で行うため、画像の表示に必要な通信は少なくて済む。

 raisr 2 RAISRのアルゴリズムの流れ

 Google+では、投稿側は解像度1000×1500ピクセルで100KBの写真を投稿する代わりに、解像度を4分の1に落として投稿すると、RAISRによるフィルタリングにより、それを見るユーザーは1000×1500ピクセルで25KBの写真を表示できるとGoogleは説明する。

 raisr 3 Google+でのRAISRのしくみ

 同社は既に、毎週10億枚以上の(Google+に投稿された)画像にRAISRを適用しているという。

 Googleはサービスに様々な形で人工知能技術を実用化している。昨年9月にはGoogle翻訳に、10月にはGoogleフォトに、11月にはGoogle Play Musicに、機械学習やニューラルネットワークを採用したと発表している。

Copyright© 2017 ITmedia, Inc. All Rights Reserved.

ピックアップコンテンツ

- PR -

注目のテーマ

マーケット解説

- PR -