最新記事一覧
今回は「2.2.2.2 バイオセンサ」の内容から、バイオセンサの組み立て技術をご紹介する。
()
トランセンドジャパンは、PCIe Gen4接続に対応した内蔵型M.2 NVMe SSD「MTE255S」を発表した。
()
今回は、「2024年度版 実装技術ロードマップ」から、「2.2.1.2 IVD、バイオロジー研究機器:細胞外小胞の網羅的解析機器の事例」の概要を報告する。
()
理化学研究所は、多様な官能基を持つ機能性ナノグラフェンの合成に成功した。中性から塩基性の条件下での合成法を開発し、これまでにはない高い水溶性や光応答性、蒸気感応性などの機能を示すナノグラフェンを合成できる。
()
北海道大学や東北大学らの研究グループは、アルファ型二酸化マンガンの極小ナノ粒子を短時間で合成する手法「アルコール溶液法」を開発した。合成した極小ナノ粒子は、多価イオン電池の正極や酸化反応触媒として高い特性を示すことが分かった。
()
大阪ガスケミカルは、「ケミカルマテリアル Japan2024」で、開発品として「多層グラフェン」や「カーボンナノチューブ(CNT)造粒品/コンパウンド」を披露した。
()
東京農工大学の研究グループは、情報通信機構やアデレード大学、東京大学と協働し、磁場下のグラフェン素子において、波長を可変できる電気駆動の赤外発光を初めて観測したと発表した。
()
熊本大学は、構造内に「孔」がない酸化グラフェン(Pf-GO)を合成し薄膜化することで、「水素イオンバリア膜」を作製することに成功した。従来の膜に比べ最大10万倍の水素イオンバリア特性を備えているため、リチウム箔を水滴から守ることができるという。
()
EUV(極端紫外線)リソグラフィに使うペリクルの素材として注目を集めているのが、カーボンナノチューブ(CNT)だ。CNTにはメリットも多いものの、EUVペリクルに応用するには、生産法が課題になる。フィンランドCanatuは、CNTの新しい製造法の開発に取り組んでいる。
()
北海道大学と東北大学は、「水系亜鉛イオン電池」の高エネルギー化、高出力化に成功した。スピネル型亜鉛マンガン複酸化物を用い、高出力動作条件でも高いエネルギー密度を発揮できる新しい正極材料を開発した。
()
産業技術総合研究所らは、プルシアンブルーを高分散担持した高結晶性グラフェン被膜多孔性シリカ球の電極化に成功し、イオンの溶出がなく連続して使用できる長寿命小型酸素センサーを開発した。
()
東北大学は、連続使用が可能な長寿命小型酸素センサーの開発に成功した。プルシアンブルーを担持した高結晶性グラフェン被覆多孔性シリカ球を用い、電極の銀イオンが溶出せず、センサー性能の低下を防ぐ。
()
北海道大学と東北大学および、カリフォルニア大学ロサンゼルス校は、亜鉛イオン電池用の正極材料を開発した。これにより、水系亜鉛イオン電池でリチウムイオン電池と同等か、それ以上の高いエネルギー密度と出力密度を実現することが可能となる。
()
産業技術総合研究所(産総研)は、テクノメディカや東北大学、富士シリシア化学および、筑波大学らと共同で、新規開発の参照極を用い、連続使用が可能な「長寿命小型酸素センサー」を開発した。
()
毎年暑いと言っているが今年は特に暑い。夏を乗り切るのに今やネッククーラーやネックファンは必須アイテムとなっているが、その決定打ともいえるTORRAS「COOLIFY Cyber」を借りることができた。本当に決定打になり得るのか、試してみた。
()
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。第5回ではリチウムイオン電池の完全循環システム構築に向けた取り組みを取り上げる。
()
京都大学は、新たに開発した炭素細線製造法を用い、「酸素ドープ型グラフェンナノリボン(GNR)」を合成することに成功した。開発した新材料は、シリコン加工にこれまで用いられてきた貴金属触媒を超えるシリコンプロセス触媒性能が得られるという。
()
NTTは、東京大学や物質・材料研究機構(NIMS)と共同で、パルス幅が1.2ピコ秒と極めて短いグラフェンプラズモン波束を電気的に発生させ、伝搬制御することに成功した。これを利用して、テラヘルツ(THz)電気信号の位相や振幅が変調できることを実証した。
()
NTTが、THzレベルの周波数を持つ超高速の電気信号に制御に向けた基礎技術の開発で成果を得たと発表。グラフェン上に電荷密度のプラズマ振動であるプラズモンの波束を、パルス幅として世界最短となる1.2psで電気的に発生させるとともに伝搬を制御することに成功したという。
()
名古屋大学は、酸化物や酸化グラフェン、窒化ホウ素といった2次元物質(ナノシート)を高速かつ大面積に成膜する方法(自発集積転写法)を開発した。操作は簡便で水面へのインク滴下と基板転写のみで成膜が完了する。専門的な知識や技術は必要なく、わずか1分程度で、ウエハーサイズやA4サイズのナノシート膜が作製できる。
()
東北大学とAZUL Energyらによる研究グループは、鉄アザフタロシアニン(FeAzPc-4N)を活性炭にまぶし、分子レベルで吸着させたキャパシター用電極を開発した。この電極を用いれば、ナノ炭素を用いるスーパーキャパシター並みの容量を安価に実現できるという。
()
Graphenext Japanは、グラフェン誘導体のナノ補強材を組み込んだ熱可塑性樹脂「グラフェン添加PetG 3Dプリンタ用フィラメント」を日本国内向けに発売する。
()
東京工業大学と分子科学研究所の研究グループは、グラフェン−カルシウム化合物において、支持基板であるSiC(炭化ケイ素)との界面にカルシウム金属層が形成されることを発見した。金属層の影響で超伝導転移温度が上昇するため、温度耐性に優れた量子コンピュータを実現できるとみている。
()
Amazon.co.jpは、5月31日午前9時に「Amazon スマイルSALE」を開始した。ストレージ製品を手掛けるLexarでは、SDメモリーカードやmicroSDメモリーカード、内蔵SSDやポータブルSSDなどをセールで出品している。最大60%もお得な製品もあり、これは見逃せない!
()
近年、リチウムイオン電池の性能を向上するために導電助剤の改良が注目されている。そこで、今回は、リチウムイオン電池の入出力向上や長寿命化、高容量化に役立つ導電助剤用であるグラフェンメソスポンジ(GMS)を開発し、展開する3DC 代表取締役の黒田拓馬氏に同製品について聞いた。
()
CFD販売は、リード最大4400MB/sの高速伝送をサポートしたM.2 NVMe SSD「SFT4000G」シリーズを発表した。
()
米ジョージア工科大学と中国天津大学の研究チームは、グラフェンを用いた機能性半導体の作成に成功したと発表した。SiCの結晶面で成長する単層のグラフェン(エピタキシャルグラフェン)を用いたものだ。
()
新エネルギー・産業技術総合開発機構は、2次元の原子シートを転写する機能性テープを開発した。フレキシブル基板をはじめ、プラスチックやポリマーのようなさまざまな素材や形状のモノに対応する。
()
神戸大学 数理データサイエンスセンター教授の木村建次郎氏に行ったインタビュー記事で紹介しきれなかった内容を取り上げています。不良品のリチウムイオン電池の危険性やリチウムイオン電池が搭載されるモノで今後安全性が心配される製品について触れています。
()
新エネルギー・産業技術総合開発機構(NEDO)と九州大学および日東電工は、グラフェンなどの2次元材料を効率よく簡単に転写できる機能性テープ「UVテープ」を共同で開発した。開発した技術は半導体や絶縁体などの2次元材料にも適用できるという。
()
産業技術総合研究所(産総研)と大阪大学、東京工芸大学、九州大学および、台湾国立清華大学の研究グループは、グラフェンの層間にアルカリ金属を高い密度で挿入する技術を開発した。電極材料としてアルカリ金属を2層に挿入したグラフェンを積層して用いれば、アルカリイオン二次電池の大容量化が可能になるという。
()
NTTとフランスのCEA Saclay、NIMS、KAISTは、グラフェンのp-n接合と、ローレンツ波形の電圧パルスによって生成される単一電子源のレビトンを用いることで、電子の飛行量子ビット動作を世界で初めて実証したと発表した。
()
東北大学は、リチウム空気電池の充放電回数を向上させる、カーボン正極の構造を考案した。従来のカーボン素材との比較では、容量、サイクル寿命の両方で上回っていることが確認された。
()
東京理科大学と物質・材料研究機構は、ナトリウムイオン電池やカリウムイオン電池用の新たな負極材料である「ZnO鋳型ハードカーボン」を合成することに成功した。
()
筑波大学は、安価で入手しやすい材料を用いながら、高い電池性能を発揮する全固体マグネシウム空気一次電池を開発した。多孔質グラフェンとマグネシウムを電極に用い、さらに電解液を固体化することで実現した。
()
アンリツは2023年10月17〜20日に開催される「CEATEC 2023」(幕張メッセ)に出展し、「『はかる』が創る持続可能な未来」をテーマに掲げ、身近な生活や社会課題解決に役立つ製品やソリューションを5つのエリアに分けて紹介する。
()
東京都立大学らの研究チームは、窒化ホウ素(BN)ナノチューブの外壁や内壁をテンプレート(基板)に用い、さまざまな組成の「TMD(遷移金属ダイカルコゲナイド)単層ナノチューブ」を合成することに成功し、その構造的な特徴も解明した。効率が高い太陽電池などに向けた材料設計の指針になるとみられる。
()
スペインの研究機関「ICFO」に所属する研究者らは、ほぼ透明なイメージセンサーを提案した研究報告を発表した。
()
産業技術総合研究所(産総研)は、誘電層に用いるチタン酸バリウム(BTO)の立方体単結晶(ナノキューブ)単層膜と、電極層として用いる多層グラフェン膜を、交互に積層するプロセス技術を開発した。積層セラミックコンデンサー(MLCC)内部の誘電層と電極層を大幅に薄層化できるという。
()
東北大学は、スパコンを用いた第一原理計算により、安定な平面構造のケイ素系ディラック物質(BeSi2)を理論設計することに初めて成功した。
()
理化学研究所(理研)は、水中で白金ナノ粒子(PtNP)と炭素ナノマテリアル(CNM)を直接複合化した3種類の「水電解水素発生触媒」を開発した。これらを用いることで、水素の発生効率と同時にコスト効率も高めることができるという。
()
理化学研究所(理研)の研究グループは、2次元トポロジカル絶縁体を用いたジョセフソン接合デバイスの作製に成功し、基本動作を確認した。今回の成果は、マヨラナ粒子の探索やマヨラナ粒子を用いた量子ビットへの応用に貢献できるとみている。
()
東北大学の研究チームは、微小なグラファイト電極を用い、二層グラフェン量子ドットにおける高周波反射測定を実現した。グラフェン量子ドット電荷計を垂直配置することで、高速/高精度な量子ビット読み出しが可能になるという。
()
早稲田大学らの研究グループは、SiC(炭化ケイ素)ウエハー表面を原子レベルで平たん化する技術に応用できる「ステップアンバンチング現象」を発見した。プロセスは比較的シンプルで、加工によるダメージ層もないという。
()
東京大学は、3種類の重い元素で構成される物質「La2IOs2」を合成し、これが12K(−261.15℃)以下の温度で、電気抵抗がゼロとなる超伝導状態になることを発見した。
()
東北大学の研究グループは、フェムト秒レーザーを用い、グラフェン膜を100nm以下というナノ精度で加工することに成功した。レーザー照射の条件を調整すれば、数ナノメートルの細孔および原子レベルの欠陥形成などに応用できるとする。
()
東京大学の研究グループは、多数のベンゼン環が直線状に連結した「ポリアセン」を合成することに成功した。太陽電池やナノデバイスなどへの応用を目指す。
()
京都大学や東京大学らの研究グループは、約1nmという厚みと幅で、長さが1μmを超える半導体の「ナノ量子細線」を作製したと発表した。この量子細線パターンは、原子スケールでチューリング機構が起こり、自発的に形成された可能性が高いという。
()
前回に続き、「におい」を定量的に評価する手法を取り上げる。今回は「成分濃度表示法(機器分析法)」を紹介する。
()