ITmedia NEWS > STUDIO >
ニュース
» 2019年02月07日 14時16分 公開

過酷なアニメ制作の現場、AIで救えるか 「動画マン」の作業を自動化、DeNAの挑戦(2/2 ページ)

[村上万純,ITmedia]
前のページへ 1|2       

 既存手法では、入力する2枚の画像間のOptical Flowを算出するだけだったが、これに首、肩、肘など関節点の座標を線でつなげたデータと、髪形、目、顔など部位ごとにフィルタリングした「マスクデータ」などを加えた。キャラクター全身の複雑な動きに対応できるよう、コンピュータに与える情報量を増やしたのだ。

アニメ DeNAの提案

 こうした「構造情報」を利用したマルチタスクの学習モデルにし、生成した中間フレームをAIの識別器(discriminator)で「正しく描けているかどうか」評価させ、学習を繰り返した。

 また、2つの識別器を使うことで生成する中間フレームの品質を向上できたという。李さんは「静止画の細部と、画像を時系列で見たときの両方を評価することで、より自然で連続的な動きになっているかと画像の品質を確認した」と話す。

アニメ 2つの識別器を使って品質向上を図った

 同社が行った実験では、ゲームサイト「Mobage」のアバターを使用。動画から連続する5枚の画像を抽出し、最初と最後の画像から中間の画像3枚を生成できるか検証した。7fpsや30fpsなどフレームレートの間隔を変えながら実験したが、構造変化が大きい低フレームレートの動画でも「常に安定してフレーム補完ができた」(李さん)としている。

アニメ 構造変化の大きい画像の中間フレームも安定して生成できたという
李さんと「構造的生成学習」を研究している濱田晃一さん

 同社はアニメ「ずんだホライずん」の中割りを生成するテストも行っており、イベント内ではキャラクターの髪がふわふわと動いたり、口が滑らかに動いたりする動画が公開された。

 DeNAは今後もアニメ生成技術の研究を続けていく。AIの活用で、動画マンの労働環境はどのように変わっていくのだろうか。

 李さんと「構造的生成学習」の研究をしているAIエンジニアの濱田晃一さんは「アニメ生成技術の挑戦はこれからも続ける。アニメ制作の新たな未来へ挑戦したい」と締めくくった。

前のページへ 1|2       

Copyright © ITmedia, Inc. All Rights Reserved.