ITmedia NEWS > ネットの話題 >
ニュース
» 2019年02月20日 20時25分 公開

「ディープラーニングは最小二乗法」で物議 東大・松尾豊氏「深い関数の方が重要」

「ディープラーニングは、原理的には単純な最小二乗法にすぎない」――2月18日付けで公開された日経新聞の記事が物議を醸している。

[村上万純,ITmedia]

 「ディープラーニングは、原理的には単純な最小二乗法にすぎない」――2月18日付けで日本経済新聞電子版が公開した記事について、Twitterでは「ディープラーニング=最小二乗法」という解釈は異なるのではという指摘が相次いだ。19日には「ディープラーニング」「最小二乗法」といったワードがTwitterでトレンド入りし、波紋が広がっていた。

 日経の記事では、慶應義塾大学経済学部の小林慶一郎教授がAI技術について解説。「近年、驚異的な発展を見せているAIのディープラーニング(深層学習)は、原理的には単純な最小二乗法(誤差を最小にする近似計算の一手法)にすぎない」と言及し、「ディープラーニングは『最小二乗法』」と題する図版が掲載された。

ML 2月18日付けで公開された日本経済新聞(電子版)の記事

 最小二乗法は、測定で得られたデータの組を、1次関数など特定の関数を用いて近似するときに、想定する関数が測定値に対してよい近似となるように、モデル関数の値と測定値の差の2乗和を最小とするような係数を決定する方法。ディープラーニングに詳しい東京大学の松尾豊特任准教授は、2018年8月に登壇したイベントで、「ディープラーニングは最小二乗法のお化けのようなもの」「従来のマシンラーニングは(階層的に)『浅い』関数を使っていたが、ディープラーニングは『深い』関数を使っている」と説明していた。

ML 東京大学の松尾豊特任准教授がツイートで解説

 松尾氏は2月20日、Twitterの公式アカウントで「小林慶一郎先生はよく議論させていただくので、少し責任を感じています」とツイート。ディープラーニングを簡潔に解説するため「深い関数を使った最小二乗法」という言葉を使ってきたが、「深い関数を使った」という説明がいつも抜け落ちてしまうと嘆く。

 続けて、「深い関数により表現力が革命的に上がり、アルゴリズム的な挙動も含め表現できるのは驚くべきこと」「『最小二乗法』は、損失関数を最小化することで、モデルのパラメータをデータから推定すること(略)深いことに比べるとそれほど重要ではありません」と投稿。経営者や政治家など、AIに詳しくない非エンジニアに正しく理解してもらうための解説は「大変難しい」と痛感しているようだ。Twitterでも同様に、AI技術について上司や同僚にどう解説すればいいかを嘆くエンジニアの声も見られた。

 松尾氏は「深い関数」の意味やそれがもたらす可能性について、今後も研究や啓もう活動を続けていくと発信した。

Copyright © ITmedia, Inc. All Rights Reserved.